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The dynamic and robust characteristics of intrinsic functional connectivity of coherent spontaneous activity
are critical for the brain functional stability and flexibility. Studies have demonstrated modulation of intrinsic
connectivity within local spatial patterns during or after task performance, such as the default mode network
(DMN) and task-specific networks. Moreover, recent studies have compared the global spatial pattern in different
tasks or over time. However, it is still unclear how the large-scale intrinsic connectivity varies during and after a
task. To better understand this issue, we conducted a functional MRI experiment over three sequential periods:
an active semantic-matching task period and two rest periods, before and after the task respectively (namely,
on-task state and pre-/post-task resting states), to detect task-driven effect on the dynamic large-scale intrinsic or-
ganization in both on-task state and post-task resting state. Three hierarchical levels were investigated, including
(a) thewhole brain small-world topology, (b) thewhole pairwise functional connectivity patterns bothwithin the
DMN and between the DMN and other regions (i.e., the global/full DMN topography), and (c) the DMN nodal
graph properties. Themajor findings are: (1) The large-scale small-world configuration of brain functional organi-
zation is robust, regardless of the behavioral state changing, while it varies adaptively with significantly higher
local efficiency and lower global efficiency during the on-task state (Pb0.05, Monte-Carlo corrected); (2) The
DMNmay be essentially engaged during both task and post-task processes with adaptively varied spatial patterns
and nodal graph properties. The present study provides further insights into the robustness and plasticity of the
brain intrinsic organization over states, which may be the basis of memory and learning in the brain.

© 2012 Elsevier Inc. All rights reserved.

Introduction

Spontaneous brain activity, utilizing the majority of brain energy
in specific organizations over different states or time (Raichle and
Mintun, 2006), may substantially account for the dynamic, robust in-
trinsic functional architecture of the brain (for a review, see Fox and
Raichle, 2007). This activity is also related to the establishment of
early cortical patterns (Price et al., 2006; Sur and Leamey, 2001) and
the development of intrinsic functional networks over ages (Fair et al.,
2008, 2009). From an evolutionary perspective at a much larger tempo-
ral scale, the brain organization has evolved to a marvelous highly-
complex system, with supporting dynamic and effective integration of
specialized local information processing (Sporns and Zwi, 2004) and a

broad flexibility of cognitive processes (Sporns et al., 2004). So, it is im-
portant to investigate the brain intrinsic organization of coherent spon-
taneous activity for understanding how the brain works.

By functional connectivity (Friston et al., 1993), studies have iden-
tified many intrinsic spatial patterns in coherent low-frequency blood
oxygen level dependent (BOLD) fluctuations of functional MRI (fMRI)
during a continuous resting state. For instance, local spatial patterns
have been identified among anatomically separated regions in neuro-
anatomical systems, including the motor (Biswal et al., 1995; Lowe et
al., 1998), auditory (Cordes et al., 2001), visual (Lowe et al., 1998),
language (Hampson et al., 2002), attention (Fox et al., 2006) and
default-mode systems (the default mode network, DMN) (Fox et al.,
2005; Greicius et al., 2003). The local spatial patterns can provide in-
sights into the intrinsic functional architecture of the human brain
(Fox and Raichle, 2007). On the other hand, for the global spatial pattern
over the whole brain, topological properties such as the small-world
characteristics (high clustering coefficient and short characteristic path
distance) and power-law (or truncated power-law) degree distribution
have been demonstrated (for reviews, see Bassett and Bullmore, 2006;
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Bullmore and Sporns, 2009; Sporns et al., 2004) in both large-scale func-
tional (Achard et al., 2006; Eguíluz et al., 2005; Salvador et al., 2005a,
2005b; Van den Heuvel et al., 2008) and structural (Hagmann et al.,
2007; He et al., 2007; Iturria-Medina et al., 2008) networks. The small-
world organization can support both functional segregation and integra-
tion (for reviews, see Bassett and Bullmore, 2006; Sporns and Zwi, 2004;
Sporns et al., 2004), which are two fundamental organizational princi-
ples of the cerebral cortex (Friston, 2002; Tononi et al., 1998; Zeki and
Shipp, 1988). It can also facilitate rapid adaptive reconfiguration of neu-
ronal assemblies in support of the cognitive state changing (Bassett and
Bullmore, 2006).

Studies have also demonstrated that the intrinsic spatial patterns
of coherent spontaneous activity could be modulated during a task
(Bianciardi et al., 2009; Calhoun et al., 2008; Fransson, 2006; Friston
and Büchel, 2000; Hampson et al., 2002; Jiang et al., 2004; Liu et al.,
1999; Lowe et al., 2000), or after task performance (Hasson et al.,
2009; Lewis et al., 2009; Peltier et al., 2005; Tambini et al., 2010;
Waites et al., 2005). We suggest that both on-task and subsequent
resting (post-task) states could be called “task-driven” states. Of all
the local intrinsic spatial patterns, the DMN is uniquely a set of
brain regions remaining more active at rest than during task perfor-
mance in an organized fashion (Fox et al., 2005; Greicius et al.,
2003), and is thought to mediate processes that are important for
the resting state (Raichle et al., 2001). Several local spatial patterns
within the DMN have been demonstrated to be changed in both
task-driven states, including an on-task state (Fransson, 2006) and a
post-task resting state (Hasson et al., 2009; Tambini et al., 2010;
Waites et al., 2005). At a larger temporal scale, studies have also
suggested that intrinsic brain functional networks would be develop-
ing over ages in specific ways (Fair et al., 2008, 2009). By contrast,
some other studies reported no significant change in a local DMN spa-
tial pattern based on a seed region of posterior cingulate cortex (PCC)
during task performance (Greicius et al., 2003; Hampson et al., 2006),
and nor in a task-specific network after task performance (Albert et
al., 2009).

On the other hand, for the variability of the global spatial pattern
across states, a pioneer work by Bassett et al. (2006) using mag-
netoencephalograph (MEG) suggests that small-world properties are
not sensitive to a visually cued finger tapping task. However, there are
two limitations of that study: (1) they did not design sequential ses-
sions of task and rest; (2) MEG sensors may be problematic in network
node definitions, because the sensors may detect spatially overlapping
signals (Ioannides, 2007; Rubinov and Sporns, 2010). There are other
different studies investigating changes in large-scale brain network to-
pology over time during learning (Bassett et al., 2011), or with respect
to different working memory tasks (Ginestet and Simmons, 2011), or
over ages at a large temporal scale (Fair et al., 2009; Meunier et al.,
2009; Wang et al., 2010). It appears that the dynamic characteristics
of intrinsic functional connectivity of coherent spontaneous activity
are critical for the brain functional stability and flexibility. Hence, it is
necessary to investigate the robustness and plasticity of the large-
scale intrinsic organization of coherent spontaneous activity in terms
of the “small-world” and the DMN topological properties together in
both task-driven states.

The present study focused on a sequential procedure of pre-task
resting, on-task and post-task resting states by fMRI, and investigated
task-driven effect on the dynamic large-scale intrinsic functional orga-
nization in both on-task state and post-task resting state (see Fig. 1A).
Three hierarchical levels of topologies were investigated, including
(a) the whole brain small-world topology, (b) the whole pairwise func-
tional connectivity patterns bothwithin the DMN and between the DMN
and other regions (i.e., the global/full DMN topography), and (c) the
DMN nodal graph properties (see Fig. 1B). Small-world analysis could
macroscopically characterize the balanced coordination between the
local specialization and global integration of parallel information pro-
cessing (functional segregation and integration). The DMN topological

analysis could provide insights into lower-level dynamic topological
properties in the large-scale intrinsic organization. Thus, the specific
question examined in this study is what topological changes would
occur in the large-scale intrinsic organization when the brain evolves
from a pre-task-resting state to both task-driven states, in terms of
(1) the small-world configuration and (2) the global DMN topography
and nodal properties.

To answer this question, we conducted an fMRI experiment that
recorded BOLD signals over three sequential periods: an active
semantic-matching task period and two rest periods, before and
after the task respectively. Under the three states, we constructed
three groups of brain functional networks for each subject using a
prior anatomical automatic labelling (AAL) atlas (see Table 1, 45 for
each cerebral hemisphere, Tzourio-Mazoyer et al., 2002) in the low-
frequency BOLD signals (0.01–0.08 Hz). Finally, the three-level topol-
ogies in terms of the small-world configuration, the global DMN to-
pography and its nodal properties were investigated across states,
and their differences between the task-driven states and pre-task
resting state were further statistically evaluated. This three-level to-
pological analysis could provide further insights into the robustness
and plasticity of the intrinsic organization during or after a task.

Material and methods

Subjects

Fifteen healthy subjects (7 males, 8 females; 23.8±0.7 years old)
from Beijing University of Technology participated in the study. All
the subjects were right-handed and reported with no history of neuro-
logical or psychiatric disorders.Written informed consentwas obtained
from each subject. All the subjects were scanned not only during a
semantic-matching task (Zhou et al., 2010) but also during rests before
and after the task. During the rest scans, subjects were instructed to
relax with their eyes closed and move as little as possible.

Data acquisitions

Participants were scanned on 3.0 Tesla Siemens MRI scanner with
the parameters: repetition time/echo time=2000/31 ms, thickness/
gap=3.2/0 mm, matrix=64×64, axial slices number=32 and field
of view=200×200 mm2. The whole brain functional images using
an echo planar imaging (EPI) sequence were acquired over all sessions.
The whole scans contained five sessions with 8 min and 14 s (244 vol-
umes) for each one, in which the first and last sessions were at rest
while the intermediate three sessions were involved in a word-
picture matching task (Zhou et al., 2010). During the task trials, a
word was first presented then followed by a picture, and subjects
were instructed to judge whether the picture matched the word or
not (Zhou et al., 2010). Hence, the five sessions could be divided into
three sequential behavioral states: pre-task resting state (the first ses-
sion), on-task state (the intermediate three sessions), and post-task
resting state (the last session). To allow for magnetization equilibrium,
subjects' adaptation to the circumstances and separation between two
adjacent sessions, the first 4 volumes of EPI sequence of each session
for each subject were discarded, with leaving 240 volumes for each ses-
sion available for further processing.

Data preprocessing

Images were first preprocessed using the software package of statis-
tical parametric mapping (SPM5, http://www.fil.ion.ucl.ac.uk/spm) over
sessions, respectively. First, all the imageswere corrected for the acquisi-
tion time delay by slice timing, and then were realigned to the first vol-
ume for head-motion correction in each session. Next, all the images
were spatially normalized to the Montreal Neurological Institute (MNI)
EPI template and resampled to 3 mm cubic voxels, without smoothing.
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Fig. 1. Overview of the investigation. A: The whole scan included 5 sessions×8′14″, in which the first and last sessions were at rest while the intermediate three sessions consisted
of alternative trials of task (word-picture matching) and fixation (baseline). Hence, the five sessions could determine three sequential behavioral states: pre-task resting state (the
first session), on-task state (the intermediate three sessions), and post-task resting state (the last session). The present study aimed to reveal task-driven effect on the dynamic
large-scale intrinsic functional organization in both on-task state and post-task resting state through three levels; B: General analysis process. Three-level topologies were inves-
tigated, including (a) the whole brain small-world topology, (b) the global/full DMN topography (i.e., connectivity patterns both within the DMN and between the DMN and other
regions), and (c) the DMN nodal graph properties.
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After those, each brain was then parcelled into 90 cortical and sub-
cortical regions using the AAL-atlas (see Table 1). Then, each regional
(90 regions of interest (ROIs)) time series were acquired by averaging
the time series over all voxels within each ROI, and filtered into the fre-
quency range of 0.01–0.08 Hz to reduce the effects of low-frequency
drift and high-frequency noise, followed by amultiple linear regression
analysis to remove several sources of spurious variances from the esti-
mated head-motion profiles (six parameters obtained from head-
motion correction) and global brain signal (Fox et al., 2005). The resid-
ual of the linear regression was considered the neuronal-induced signal
of each corresponding region.

Construction of large-scale brain functional networks

Large-scale brain functional networks were constructed as the glob-
al spatial patterns of coherent brain BOLD activity over the three se-
quential states. The 90 ROIs from the AAL-atlas were defined as nodes.
Edges were determined by whether the strength of functional connec-
tivity between any pair of ROIs exceeded a threshold. To measure the
functional connectivity, we calculated Pearson correlation coefficients
of time series (BOLD signals) between any pair of brain regions,
followed by a Fisher's r-to-z transformation (Jenkins and Watts, 1968)
to improve the normality of the correlation coefficients. Then, a tempo-
ral correlation matrix (90×90) was obtained for each subject during

each session. For the on-task state (the intermediate three sessions),
the correlation matrices (after the Fisher's r-to-z transformation) were
averaged over the three sessions for each subject. Thus, three groups
of correlation matrices were acquired corresponding to the three se-
quential behavioral states, respectively. Finally, each correlation matrix
was thresholded by aflexible threshold value T (≥0) into a binarymatrix
whose element was 1 if the corresponding correlation exceeded T and
0 otherwise. These processes resulted in three groups of binary undirect-
ed graphs underlying the large-scale brain functional organization.

Extraction of the default mode network and its spatial topography

In the present work, the DMN regions were determined from the
AAL-atlas primarily according to the coordinates of the peak foci of
all the “task-negative” regions (Fox et al., 2005). The ROIs in the
AAL-atlas which covered the coordinates or the most adjacent ones
were selected. Two coordinates (−3, 39, −2) and (1, 54, 21) were
close to the inter-hemisphere locations between the left and right homo-
geneous regions, so the corresponding bilateral AAL-atlas regions were
also selected. Last, the peak coordinate (−2,−36, 37) is near the bound-
ary between cingulum_Mid_L and cingulum_Post_L, but the great part of
the left PCC in Fox et al. (2005) is involved in cingulum_Post_L, sowe se-
lected cingulum_Post_L as the corresponding left PCC. Totally fourteen
regions were selected as the AAL-based DMN components (see Table 2
and Fig. 1B). Finally, the global DMN topography were extracted from
the 90×90 global correlation topography (after the Fisher's r-to-z trans-
formation), which includes the pairwise functional connectivity patterns
both within the fourteen DMN regions (the intra-DMN functional con-
nectivity) and between them and non-DMN regions (the extra-DMN
functional connectivity).

Small-world efficiencies

Global and local network efficiencies (Eglobal and Elocal, see the
equations below) are firstly defined by Latora and Marchiori to mea-
sure the capability of parallel information transfer in global and local

Table 1
Regions of interest in the AAL-atlas.

Partitions Regions of interest

Frontal Frontal_Sup_L /R
Frontal_Sup_Orb_L/R
Frontal_Mid_L/R
Frontal_Mid_Orb_L/R
Frontal_Inf_Oper_L/R
Frontal_Inf_Tri_L/R
Frontal_Inf_Orb_L/R
Frontal_Sup_Medial_L/R
Frontal_Med_Orb_L/R
Rectus_L/R

Parietal Precentral_L/R
Supp_Motor_Area_L/R
Postcentral_L/R
Parietal_Sup_L/R
Parietal_Inf_L/R
SupraMarginal_L/R
Angular_L/R
Precuneus_L/R
Paracentral_Lobule_L/R

Occipital Calcarine_L/R
Cuneus_L/R
Lingual_L/R
Occipital_Sup_L/R
Occipital_Mid_L/R
Occipital_Inf_L/R
Fusiform_L/R

Temporal Rolandic_Oper_L/R
Insula_L/R
Hippocampus_L/R
ParaHippocampal_L/R
Amygdala_L/R
Heschl_L/R
Temporal_Sup_L/R
Temporal_Pole_Sup_L/R
Temporal_Mid_L/R
Temporal_Pole_Mid_L/R
Temporal_Inf_L/R

Cingulum Cingulum_Ant_L/R
Cingulum_Mid_L/R
Cingulum_Post_L/R

Subcortial Olfactory_L/R
Caudate_L/R
Putamen_L/R
Pallidum_L/R
Thalamus_L/R

Table 2
Default mode/task-negative regions (Fox et al., 2005) defined in the AAL-atlas.

Regions of interest in
the AAL

Talairach coordinates (x, y, z)
in Fox et al. (2005)

Common names used in
Fox et al. (2005)

Frontal_Sup_L (−14, 38, 52)⁎ Superior frontal
Frontal_Sup_R (17, 37, 52)
Frontal_Sup_Medial_L (1, 54, 21) Medial prefrontal cortex

(MPF)Frontal_Sup_Medial_R
Cingulum_Ant_L (−3, 39, −2) Medial prefrontal cortex

(MPF)Cingulum_Ant_R
Cingulum_Post_L (−2, −36, 37)⁎ Posterior cingulate gyrus /

precuneus (PCC)
Cingulum_Post_R (3, −51, 8)⁎ Retro-splenial
ParaHippocampal_L (−22, −26, −16) Parahippocampal gyrus
ParaHippocampal_R (25, −26, −14)
Angular_L (−47, −67, 36) Lateral parietal cortex

(LP)Angular_R (53, −67, 36)
Temporal_Mid_R (65, −17, −15) Inferior temporal
Temporal_Inf_L (−61, −33, −15)

Column 2 is the coordinates of the peak foci of all the “task-negative” regions or the
DMN regions in Fox et al. (2005). In the present work, the AAL-based DMN regions
were determined primarily according to the coordinates. The ROIs in the AAL-atlas
which cover the coordinates or the most adjacent ones were selected. Of them, the
peak coordinates (−14, 38, 52)* in the superior frontal (BA8) and (3, −51, 8)* in the
retrosplenial (BA30) reported in Fox et al. (2005) are located outside the AAL-atlas of
the cerebrum, so we selected their two most adjacent coordinates inside the AAL-atlas,
which were (−14, 38, 50) and (3, −45, 11) located in Frontal_Sup_L and
Cingulum_Post_R, respectively. Because the two coordinates (−3, 39, −2) and (1, 54,
21) are adjacent to the inter-hemisphere locations between the left and right homoge-
neous regions, the corresponding bilateral AAL-atlas regions were also selected. The
peak coordinate (−2, −36, 37)* is near the boundary between cingulum_Mid_L and
cingulum_Post_L, but the great part of the left PCC in Fox et al. (2005) is included in
cingulum_Post_L, so we selected cingulum_Post_L as the corresponding left PCC.
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scopes in a network (Latora and Marchiori, 2001, 2003). Such metrics
are essentially well-defined versions of the classical small-world metrics
of the characteristic path length and clustering coefficient, irrespective of
the network connectivity. Of them, the global efficiency could be inter-
preted as inversely related to the characteristic path length while the
local efficiency is a generation of the clustering coefficient. Studies have
applied them into estimating economical performance of small-world
cortical anatomical networks of cat and macaque (Latora and Marchiori,
2001) and functional networks of human brains (Achard and Bullmore,
2007; Wang et al., 2009). In the present work, we therefore favored the
use of global and local efficiencies to compare the small-world topology
between different behavioral states. The following are their formula def-
initions in a graph Gwith N nodes (Achard and Bullmore, 2007; Ginestet
et al., 2011; Latora and Marchiori, 2001, 2003),

Eglobal Gð Þ ¼ 1
N N−1ð Þ

X

i∈G

X

j≠i∈G

d−1
ij

where dij denotes the shortest path distance from nodes i to j;

Elocal Gð Þ ¼ 1
N

X

i∈G

Eglobal Gið Þ

where Gi denotes a subgraph of G, containing all the nearest neighbors of
node i.

Moreover, the region-specific global efficiency, denoted by
Enodal_global(i), is also required,

Enodal�global ið Þ ¼ Eglobal G; ið Þ ¼ 1
N−1

X

j≠i∈G

d−1
ij

which quantifies the connectivity of node i to all the other nodes in the
graph (Ginestet et al., 2011).

To estimate the small-world properties, we generated 100 degree-
matched random networks by a Markov-chain algorithm (Maslov and
Sneppen, 2002; Milo et al., 2002; Sporns and Zwi, 2004). These metrics
(Eglobal and Elocal) of real networks were normalized by calculating the
ratios with the mean values from the corresponding 100 random net-
works. As originally proposed by Watts and Strogatz (1998), small-
world networks have short characteristic path lengths (similar to random
networks) and high clustering coefficients (similar to regular networks).
Correspondingly, the global efficiency of a small-world network should
be approximately equal to that of the degree-matched random networks
while the local efficiency is much higher (Eglobal_real/Eglobal_random≈1,
Elocal_real/Elocal_random>1), and these features have been demonstrated
in small-world brain functional networks (Achard and Bullmore, 2007).

Fig. 2. Mean inter-regional correlation matrices and mean correlation coefficients (Z-values) during the pre-task resting, on-task and post-task resting states, respectively. The
mean inter-regional correlation matrices were obtained by averaging a set of correlation matrices across subjects during the pre-task resting (A), on-task (B) and post-task resting
states (C), respectively, where individual correlation matrix was acquired by calculating Pearson correlation coefficients of time series between each pair of AAL brain regions. The
color bar indicates the correlation coefficients. D: the density or mean correlation coefficients of inter-regional correlation matrices (after Fisher's r-to-z transformation for each
subject) were obtained during the three states, by taking the mean over all positive connections and over subjects, respectively. There was no significant difference in density
among the three behavioral states (ANOVA, F=1.34, df=2, P=0.273).
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Statistical analysis

Threshold selection
In the present study, we employed flexible correlation thresholds

T (≥0) to generate large-scale functional networks for each of the
three behavioral states with exactly the same number of nodes and
edges or connectivity, ensuring that any graph differences between states
would be really due to reconfiguration of specific functional connectivity,
not the overall connectivity in network topology. A measurement of
threshold, the sparsity S of brain networks, is usually defined by a ratio
of the number of existing edges over maximum possible number of
edges. Then, the differences in network topology between states were
further statistically evaluated by fixing the sparsity (0.05≤S≤0.46, step
by 0.01). The minimum S of 0.05 was empirically set (Achard et al.,
2006;Wang et al., 2009;Watts and Strogatz, 1998), while the maximum
S of 0.46 was determined by the minimum value of the 45 maximum S
values (when T=0) across all subjects and states (15 subjects×3 states).
As a result, a set of large-scale brain functional networks (totally 42)were
generated for each subject during each state over awide range of sparsity
(0.05≤S≤0.46).

Statistical comparisons
To determine whether there were significant differences in the

small-world properties (Eglobal_real, Elocal_real, Eglobal_real/Eglobal_random,
and Elocal_real/Elocal_random) of brain functional networks, the global
DMN topography and its two nodal graph properties (degree and
Eglobal_real of the fourteen DMN regions) between two states (the on-
task state or the post-task resting state vs. the pre-task resting state),
two-tailed paired t-tests were performed for each statistic across sub-
jects. Of note, multiple statistical tests of the between-state differences
in the small-world and DMN nodal properties were respectively
corrected over awide range of sparsity levels in achieving an overall sig-
nificance level (Pb0.05) via Monte-Carlo simulation, except the global
DMN topography. As a result, two groups of multiple-comparison ma-
trices, i.e., 4 small-world metrics×42 sparsity levels and 28 metrics
(fourteen DMN regions by two nodal graph properties)×42 sparsity
levels, were available in between-state comparisons.

Our aim of the statistical evaluation is to find significant ranges of
sparsity levels of true differences in topological metrics. Here, we
made use of a scheme of Monte-Carlo correction in detection of
truly activated brain regions in functional studies (Forman et al.,
1995; Ledberg et al., 1998; Xiong et al., 1995; AlphaSim program in
AFNI software package: http://afni.nimh.nih.gov/). In the present
work, the basic hypothesis is that the true differences in topological
metrics between states would cover a wide range of sparsity levels
(namely, sparsity segments), whereas random noise should have
much less of a tendency to form a widely enough significant sparsity
segment. Thus, an appropriate combination of thresholding on both
individual sparsity significance level (p) of each testing statistic and
sparsity segment length (SSL, the number of sparsity levels in a range
of sparsity) could be used as criteria to distinguish between truly

significant differences and random noise. First, we presented estimates
of false positive probability distributions for sparsity segments as a func-
tion of SSL and p via Monte-Carlo simulations (3000 iterations in the

Fig. 3. Between-state comparisons of small-world properties as functions of sparsity.
The graphs show the differences in the small-world properties between states (i: the
post-task resting state vs. the pre-task resting state; ii: the on-task state vs. the pre-
task resting state; iii: the on-task state vs. the post-task resting state) as functions of
sparsity. The gray lines represent the 95% confidence intervals of the between-state
differences over the range of sparsity. The solid stars indicate there are multiple signif-
icant differences in the small-world properties between states (Pb0.05, Monte-Carlo
corrected, individual sparsity significance level p=0.05, SSL≥3), while the hollow
stars indicate individual significance levels (individual pb0.05, uncorrected). All the
insets show original values of the small-world properties during each state (In all in-
sets, red lines: post-task resting state (PoTRS); fuchsia lines: on-task state (OnTS);
blue lines: pre-task resting state (PrTRS)). A: the global efficiency (Eglobal_real); B: the
local efficiency (Elocal_real); C: the normalized global efficiency (Eglobal_real/Eglobal_random);
D: the normalized local efficiency (Elocal_real/Elocal_random).
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present work) for the two multiple-comparison matrices (4×42 and
28×42), respectively. Then, we decided an appropriate combination of
SSL and p thresholds whose corresponding estimate of false positive

probability was less than 0.05. Consequently, we acquired significant
sparsity segments of true differences under a desired overall significance
level, Pb0.05.

Fig. 3 (continued).
Fig. 3 (continued).
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Results

No significant difference in density of inter-regional correlation matrices
across states

Differences in density of inter-regional correlation matrices be-
tween different conditions can be tested by considering themean corre-
lation coefficients over all studied connections (Ginestet and Simmons,
2011). Figs. 2A–C shows the mean inter-regional correlation matrices
across subjects based on the AAL-atlas during the pre-task resting, on-
task and post-task resting states, respectively. Fig. 2D shows the density
or mean correlation coefficients of inter-regional correlation matrices
(after Fisher's r-to-z transformation for each subject) during the three
states, each of which was acquired by taking the mean over all positive
connections and over subjects. There was no significant difference in
density among the three behavioral states (ANOVA, F=1.34, df=2,
P=0.273).

Robustness of the small-world topology across states

Fig. 3 shows that the brain functional organization has a robust, ef-
ficient small-world configuration (Eglobal_real/Eglobal_random≈1, Elocal_real/
Elocal_random>1) across the pre-task resting, on-task and post-task rest-
ing states within a wide range of sparsity levels (0.05≤S≤0.46), char-
acterized by both high global and local efficiencies (Eglobal_real and
Elocal_real). Consistently, the small-world topology has been demon-
strated in previous brain functional network studies during both rest
(AAL-based fMRI: Achard and Bullmore, 2007; Achard et al., 2006;
Salvador et al., 2005a; Wang et al., 2009; voxel-based fMRI: Van den
Heuvel et al., 2008) and task (fMRI: Eguíluz et al., 2005; Ginestet and
Simmons, 2011; EEG: Micheloyannis et al., 2006; MEG: Bassett et al.,
2006). Taken together, our data demonstrated that the small-world
configuration of brain functional organization was robust across task
and resting states.

Stability of the small-world topology across the pre-/post-task resting states

Therewasno significant difference in both global and local efficiencies
of the small-world brain functional networks between the pre- and post-
task resting states over a wide range of sparsity levels (0.05≤S≤0.46)
(see Figs. 3A-i and B-i). When scaled to degree-matched random net-
works (Eglobal_real/Eglobal_random and Elocal_real/Elocal_random), the normalized
efficiencies had no significant difference between the two resting states
either (see Figs. 3C-i and D-i). Our data demonstrated the small-world
configuration of brain functional organization was stable during resting
states regardless of preceding experiences.

Changes in the small-world topology during the on-task state

There were significant differences in both global and local efficien-
cies of small-world brain functional networks during the on-task state

Table 3
Small-world comparisons of the brain functional networks.

Relations Eglobal_real Eglobal_real Eglobal� real
�
Eglobal� random

Eglobal� real
�
Eglobal� random

bOnTS, PrTRS> b NA b b

bOnTS, PoTRS> b > b b

bPoTRS, PrTRS> ≈ ≈ ≈ ≈

The table shows summarized results of the small-world comparison analysis in Fig. 3,
i.e., during the on-task state (OnTS) vs. the pre-task resting state (PrTRS), during the
OnTS vs. the post-task resting state (PoTRS), and during the PoTRS vs. the PrTRS. In addi-
tion, “NA”means that the relationship of theOnTS and the PrTRS in terms of Elocal_real could
not be determined in the current data. Because in Fig. 3B-ii, the differences of Elocal_real be-
tween the OnTS and the PrTRS are only individual significant at some sparsity levels
(S=0.06, 0.07, 0.20 and 0.21, pb0.05, uncorrected), and were regarded as random noise
in terms of the present Monte-Carlo correction.

Fig. 3 (continued).
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comparedwith the pre- and post-task resting stateswithin some ranges
of sparsity (see Figs. 3A-ii, iii and B-ii, iii). When scaled to degree-
matched random networks, the normalized efficiencies had significant
differences as well (see Figs. 3C-ii, iii and D-ii, iii). The statistical multiple
comparisons of the small-world properties were corrected by theMonte-
Carlo simulation (Pb0.05, individual p=0.05, SSL≥3). We found that,
as marked by solid stars, during the on-task state compared with the
pre- and post-task resting states, Elocal_real was significantly increased
(0.14≤S≤0.46, see Fig. 3B-iii) while Eglobal_real (0.05≤S≤0.12, see

Fig. 3A-ii; 0.05≤S≤0.22, see Fig. 3A-iii), Eglobal_real/Eglobal_random (0.05≤
S≤0.12, see Fig. 3C-ii; 0.05≤S≤0.22, see Fig. 3C-iii) and Elocal_real/
Elocal_random (0.05≤S≤0.11, see Fig. 3D-ii; 0.05≤S≤0.09, see
Fig. 3D-iii) were significantly diminished. For Elocal_real in Fig. 3B-ii, the
hollow stars indicate individual significant differences between the on-
task state and pre-task resting state at some sparsity levels (S=0.06,
0.07, 0.20 and 0.21, pb0.05, uncorrected), and these differences were
regarded as random noise in terms of the present Monte-Carlo correc-
tion. All the comparison results in Fig. 3 were summarized in Table 3.

Fig. 4. The variation maps of the global DMN topography. A: changes of the on-task state relative to the pre-task resting state; B: changes of the post-task resting state relative to the
pre-task resting state; Color cells indicate the individual significant differences in the global DMN topography between the task-driven states and pre-task resting state (individual
pb0.05, uncorrected). Warm color cells represent positive values while cold color cells represent negative values.
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Changes in the global DMN topography during the task-driven states

Compared with the pre-task resting state, the variations of the
global DMN topography during both on-task state and post-task resting
state are shown in Figs. 4A and B (individual pb0.05, uncorrected), re-
spectively. The 90AAL regions are classified into six partitions: the fron-
tal, parietal, occipital, temporal, cingulum and subcortical areas. Of note,
the DMN components are listed independently as a separated module.
A semantic-matching task primarily demands the involvement of visual
and semantic processing, sowe just showed the variationmaps of func-
tional connectivity between the DMN and frontal, occipital and tempo-
ral areas in this article.

During the on-task state vs. the pre-task resting state (see Fig. 4A),
most of the varied intra-DMN functional connectivity (except among
cingulum_Post_L, cingulum_Post_R and angular_R) was predominantly
intensified. The varied extra-DMN functional connectivity associated
with the frontal-temporal areas was predominantly intensified, while
others associated with the occipital lobes was predominantly decreased.
However, during the post-task resting state vs. the pre-task resting
state (see Fig. 4B), the intra-DMN functional connectivity between
cingulum_Post_L and cingulum_Post_R was decreased, which also oc-
curred during the on-task state. In the extra-DMN connectivity topogra-
phy, several regions in the frontal-temporal area such as the superior
orbito-frontal and middle temporal pole regions exhibited reduced
functional connectivity with the DMN system as well.

Changes in the DMN nodal graph properties during the task-driven states

Most of the DMN nodal degrees were significantly increased dur-
ing the on-task state relative to the pre-task resting state within
some ranges of sparsity levels (see Fig. 5A, Pb0.05, Monte-Carlo
corrected, individual p=0.05 and SSL≥4). Only four DMN regions
exhibited no significant difference in nodal degree, including
Temporal_Inf_L, Angular_R, Cingulum_Post_R and Parahippocampal_L.
However, during the post-task resting state vs. the pre-task resting
state (see Fig. 5B, Pb0.05, Monte-Carlo corrected, individual p=0.05
and SSL≥4), the degree of Parahippocampal_L was significantly de-
creased while the degrees of Parahippocampal_R and Cingulum_Ant_R
were significantly increased within some ranges of sparsity levels.
Thus, the degree of Parahippocampal_L was maintained across the
pre-task resting state and on-task state, but was significantly decreased
during the post-task resting state. The degrees of Parahippocampal_R
and Cingulum_Ant_R were significantly increased in both the task-
driven states relative to the pre-task resting state. In addition, most
of the DMN regions with nodal degree increased were also increased
in global efficiency (see Fig. 5).

Discussion

In the present study, we investigated the robustness and plasticity
of the brain intrinsic functional architecture of coherent spontaneous

Fig. 5. The variation maps of the DMN nodal graph properties (degree and global efficiency) as functions of sparsity. A: changes of the on-task state relative to the pre-task resting
state; B: changes of the post-task resting state relative to the pre-task resting state. All the differences of the DMN nodal graph properties were statistically tested by two-tailed
paired t-tests between states over a wide range of sparsity levels, and the multiple significances of (A) and (B) were corrected by the Monte-Carlo simulation, respectively
(Pb0.05, Monte-Carlo corrected, individual sparsity significance level p=0.05, SSL≥4). Warm color cells represent positive values while cold color cells represent negative values.
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activity across task and resting states in several topologies. To our
best knowledge, we for the first time investigated the topological
changes in the large-scale intrinsic functional organization in both
task-driven states through three levels: (a) the whole brain small-
world topology, (b) the global DMN topography, and (c) the DMN
nodal graph properties. Before doing these, we also reported there
was no significant difference in the mean correlation coefficients or
density of inter-regional correlation matrices among the three states
(see Fig. 2D). Moreover, we fixed a wide range of sparsity of brain net-
works for the statistical evaluation of differences in the small-world
and DMN nodal properties between states. It appeared that these pro-
cesses allowed to disentangle differences of intrinsic connectivity in to-
pology from differences in inter-regional correlation density. Finally, we
revealed some development features in topology of the brain functional
intrinsic organization in both task-driven states, and may provide fur-
ther insights into dynamic task-driven processes of coherent spontane-
ous activity over states.

Robustness and stability of the small-world topology across the pre-/
post-task resting states

Our results indicated that, during the pre-/post-task resting states,
the brain functional organization maintained a robust, stable and effi-
cient small-world configuration for its internal complicated informa-
tion processing (see Figs. 3A–D-i). A small-world topology has been
demonstrated in previous brain functional network studies during a
continuous resting state (AAL-based fMRI: Achard and Bullmore,
2007; Achard et al., 2006; Salvador et al., 2005a; Wang et al., 2009;
voxel-based fMRI: Van den Heuvel, et al., 2008). In the present

work, we further found that the post-task processes could not induce
disturbances on the intrinsic small-world topology or the balance be-
tween the local specialization and global integration. Thus, the efficient
small-world configuration of the brain organization may remain robust
and stable across different resting states (or passive states) regardless of
recent experiences. However, we cannot conclude that the two resting
states are equivalent, because their differences could be uncovered by
the DMN topological analysis in the later sections.

Changes in the small-world topology during the on-task state

The results indicated that the task-induced functional organization of
the human brain also had an efficient small-world configuration (see
Figs. 3A–D-ii, iii), which is robust in general. The small-world organiza-
tion has been demonstrated in previous brain functional network studies
during a task (fMRI: Eguíluz et al., 2005; Ginestet and Simmons, 2011;
EEG: Micheloyannis et al., 2006; MEG: Bassett et al., 2006). However,
we found significant differences in the small-world properties (Elocal_real,
Eglobal_real, Eglobal_real/Eglobal_random, and Elocal_real/Elocal_random) between the
on-task state and resting states (see Figs. 3A–D-ii, iii or Table 3). These
findings indicated that the ongoing task could impact the intrinsic
small-world configuration of the human brain. Moreover, the small-
world organization reflects an optimal balance between the local special-
ization and global integration of parallel information processing (Bassett
and Bullmore, 2006; Sporns and Zwi, 2004; Sporns et al., 2004). There-
fore, there would be a new optimal balance between the functional seg-
regation and integration adaptively generated in support of the task
performance.

Fig. 5 (continued).

404 Z. Wang et al. / NeuroImage 62 (2012) 394–407



Author's personal copy

Rubinov and Sporns (2010) suggests that local efficiency is a mea-
sure of functional segregation for the ability of specialized processing
to occur within densely interconnected groups of brain regions. Global
efficiency is a measure of functional integration for the ability of rapidly
combining specialized information over distributed brain regions. On
the one hand, the current data demonstrated that the average local effi-
ciency (Elocal_real) was increased during the on-task state (see Figs. 3B-ii,
iii), that is, there was higher efficient recurrent processing in the local
circuitries. The normalized local efficiency (Elocal_real/Elocal_random) was di-
minished (see Figs. 3D-ii, iii), which may indicate that the efficiency of
local synchronous couplingswas closer to that of the corresponding ran-
dom networks in favor of more efficient task-related subprocesses.
Therefore, the brain may exhibit stronger advantages in the local spe-
cialized information processing during the task performance. On the
other hand, both the original and normalized global efficiency (Eglobal_real
and Eglobal_real/Eglobal_random) were decreased during the on-task state
(see Figs. 3A-ii, iii and C-ii, iii). These findings implied that the average
sequence of functional associated regions over the whole cortex was
longer under the active task stimulus. Moreover, more multiple series
of local specialized information processing were involved in the task-
related processes. However, as an opposite of the information efficiency,
the information diversity of the global integration tended to be increased
at the same time in favor of a diverse task-related global integration from
more widely distributed sources of local specialized information. Hence,
the distinct changes in the local and global efficiencies may reflect adap-
tive modulation of the balance between the functional segregation and
integration in thebrain. On thewhole, the large-scale small-world config-
uration of brain functional organization was robust over states, while
with adaptive dynamic properties of local and global efficiencies.

Finally, a pioneer work by Bassett et al. using MEG found that the
whole brain small-world properties were notmuch affected by a visually
cued finger tapping task (Bassett et al., 2006). In addition to the limita-
tions (see the Introduction section of the paper), the simply-repeated
motion task may induce some reshaped local spatial patterns rather
thanglobal topological properties in the large-scale intrinsic organization.
Thus, we speculate that the intrinsic small-world configuration could not
be modulated by such simply-repeated motion or sensory tasks. But the
active semantic-matching task impacted the intrinsic small-world config-
uration during the on-task state, whichmay demandmore cognitive pro-
cessing and brain areas engagement. So, the small-world topological
properties of brain functional networks may be strongly related to task
properties.

Changes in the global DMN topography during the task-driven states

In addition to the small-world analysiswith amacroscopic perspective
in viewof graph theories, the globalDMNtopographywas also needed for
analysis as a pivotal subsystem within the large-scale intrinsic organiza-
tion. Previous studies have demonstrated that the spatial patternswith-
in the DMN are sensitive to different behavioral states (Fransson, 2006;
Hasson et al., 2009; Tambini et al., 2010;Waites et al., 2005). In the pre-
sent study, it was demonstrated that the global DMN topography was
changed in both task-driven states, because theDMNmay be essentially
engaged during both task and post-task processes.

Studies have demonstrated strong relationship between the DMN
and cognition performance. For instance, abnormality of the DMN in
schizophrenia patients could result in a relatively poor performance of
working memory task (Whitfield-Gabrieli et al., 2009). Reduction in
the DMN activity occurs with cognition decline during normal aging
(Damoiseaux et al., 2008). Performance on a working memory task
is positively correlated with the strength of functional connectivity
between the medial frontal gyrus or ventral anterior cingulate cortex
(MFG/vACC) and PCC (Hampson et al., 2006). Moreover, Hampson
et al. (2006) suggest that the DMN may be engaged during cognitive
tasks to facilitate or monitor cognitive performance. Our results further
suggest a consistent perspective from the changes in both extra- and

intra-DMN functional connectivity during the on-task state. First, the re-
duction in functional connectivity between the occipital and DMN areas
(see Fig. 4A) may indicate that the task-relevant visual occipital areas
performed weaker synchronization with the DMN system during the
on-task state. Hasson et al. (2009) also found weaker synchronization
between the DMN and task-relevant regions during task performance.
The reduction in the extra-DMN functional connectivity may reflect a
competition of the processing resources allocation between the DMN
and some task-relevant regions in the brain. Second, the functional con-
nectivity between the DMN and frontal-temporal areas predominantly
skewed towards relatively greater levels during the on-task state (see
Fig. 4A). This finding could be interpreted as reflecting a facilitating syn-
chronous interference between the DMNand frontal-temporal areas for
the purpose of the task-relevant semantic processing and the control of
memory information retrieval. Third, most of the varied intra-DMN func-
tional connectivity (except among cingulum_Post_L, cingulum_Post_R
and angular_R) was also found to be significantly enhanced during the
on-task state (see Fig. 4A). This finding reflects stronger coupling coordi-
nation within the DMN, which may be related to task-relevant informa-
tion encoding or a reflection of internal mediating processes. Hence, the
DMN may be essentially engaged during task performance in specific
fashions rather than absolutely suppressed.

We also found a weaker synchronization in the PCC-angular net-
work within the DMN during the on-task state, and the decreased
connectivity between the bilateral PCC persisted across both the task-
driven states (see Fig. 4). It accords well with previous studies demon-
strating substantially weaker functional connectivity based on a seed re-
gion of PCC/precuneuswithin theDMNduring a task than rest (Fransson,
2006; Hasson et al., 2009). The PCC or PCC-angular network may be re-
lated to active disengagement from ongoing or previous tasks (Hasson
et al., 2009). On the whole, both active engagement and disengagement
of the DMN regions are behaviors of task-driven adaptations over states.

During the post-task resting state, there was slightly specific
reconfiguration in the global DMN topography. Two opposite modes
of variations occurred in the global DMN topography, and they may
conflict with each other. One was a recurrence of the varying functional
connectivity associated with the preceding task. For example, during
both the task-driven states vs. the pre-task resting state, the functional
connectivity between the bilateral PCCwas decreased, or the functional
connectivity between Cingulum_Ant_L/R and Frontal_Med_Orb_L was
enhanced (see Fig. 4). The other onewas a reverse changing of function-
al connectivity relative to the on-task state. For example, the functional
connectivity between the DMN and frontal–temporal areas was pre-
dominantly intensified during the on-task state (see Fig. 4A), but
some regions in the frontal-temporal area exhibited reduced functional
connectivity with the DMN during the post-task resting state (see
Fig. 4B).

Recently, there is a serious debate about the nature of default mode
activity. Several researchers suggest that this intrinsic activity in the
DMN is associated with task-unrelated thoughts (Masson et al., 2007;
McKiernan et al., 2006), or likely reflect a more fundamental property
of the brain functional organization (Raichle and Snyder, 2007; Vincent
et al., 2007). By contrast, some studies have proposed that this activity
at rest could be associated with recent experiences (Hasson et al.,
2009; Miall and Robertson, 2006; Tambini et al., 2010). In the present
study, the common variations in the global DMN topography between
the on-task state and post-task resting state seem to be evidence on
their close association. The opposite variations in the global DMN topog-
raphy during the post-task resting state relative to the on-task state
might be related to a recovery of task-free defaultmode activity. Previous
studies have also demonstrated reshaped resting-state functional con-
nectivity patterns after cognitive tasks in human brains (Albert et al.,
2009; Hasson et al., 2009; Lewis et al., 2009; Tambini et al., 2010).
Albert et al. (2009) and Lewis et al. (2009) related the post-taskmodula-
tion in the resting-state functional connectivity to the recent learning ex-
periences. In the present study, we did not quantitatively measure how
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much learning effect occurred during the task performance. Nonetheless,
the preceding task could induce changes in the global DMN topography,
and the DMN should be strongly engaged in the post-task processes.

Changes in the DMN nodal graph properties during the task-driven states

In addition to the small-world and global DMN topography analy-
sis, changes in the DMN nodal properties were further investigated in
terms of nodal degree and global efficiency. A nodal degree can reflect
a local association capability of the given node while the nodal global
efficiency can reflect a transfer capability over the whole network. On
the basis of graph theories, these DMN nodal properties could provide
nodal-level evidence on the changes of the DMN activities in both task-
driven states, and further supported our hypothesis that the DMNmay
be essentially engaged during both task and post-task processes.

Our results showed that the nodal degree and global efficiency
were significantly increased for most of the DMN regions during the
on-task state (see Fig. 5A). These results indicated that the capabilities
of both local association and global transfer of the DMN were predom-
inantly increased. Thus, there was denser information integration or
distributed cognitive coordination mediated through the DMN. More-
over, hubs play pivotal roles in the coordination of information flow in
brain networks (Sporns et al., 2007). Studies have demonstrated a por-
tion of cortical hubs or cores as the components of the DMN in both
brain structural (Hagmann et al., 2008) and functional networks over
passive and active on-task states (Buckner et al., 2009). In addition,
the DMN may also play a critical role in different cognitive abilities
(Damoiseaux et al., 2008; Hampson et al., 2006; Whitfield-Gabrieli et
al., 2009). Therefore, we suggest that the DMN may play a critical role
in the task-related information integration over the distributed cortical
regions during the on-task state.

Moreover, our results also showed that the bilateral parahippocampus
varied discriminately in the sense of nodal degree and efficiency during
the post-task resting state. Compared with the pre-task resting state,
the degree and efficiency of right parahippocampuswere significantly in-
creased in both the task-driven states over a range of sparsity (see Fig. 5).
By contrast, the degree of left parahippocampus was significantly de-
creased only during the post-task resting state (see Fig. 5B). Recent stud-
ies have demonstrated that parahippocampus is involved in long-term
memory encoding (Schon et al., 2004; Wagner et al., 1998), short-term
maintenance of workingmemory (Luck et al., 2010) and their interaction
(Axmacher et al., 2008). Thus, we could interpret the results that the right
parahippocampus maintained being engaged in task-related memory
encoding across both task-driven states. On the other hand, the left
parahippocampus might mainly contribute to a recovery of task-free de-
fault mode activity during the post-task resting state, and also it might be
indirectly involved in the memory consolidation by interaction with the
right parahippocampus.

Further considerations

Several issues remain to be addressed in the future. First, the BOLD
signals of all the sessions were filtered into the frequency range of 0.01–
0.08 Hz in the present study. But a time-scale or frequency-specific
brain functional networks should be considered across sequential behav-
ioral states in the future. Second, other types of cognitive tasks should be
employed to examine their topological influences on the large-scale in-
trinsic functional organization in both task-driven states. Third, it is im-
portant to understand the dynamicmechanisms of the DMNwithin the
global functional network. According to the default mode theory, the
brain may be constantly monitoring the internal or external environ-
ment to support overt behaviors (Miall and Robertson, 2006). Thus,
does such drastic variations in the DMN topological properties relate
to an occurrence of global topological modulation? Finally, the sparsity
step would influence the results of Monte-Carlo simulation. Thus, it
should be considered as a variable to improve the flexibility of the

Monte-Carlo multiple correction. Moreover, a recent work has devel-
oped cost-integrated topological metrics into network topological com-
parisons, which seems to have escaped the bias problem of thresholds
(Ginestet et al., 2011).

Conclusions

In the present study, we conducted an fMRI experiment with the
three sequential periods of pre-task resting, on-task and post-task rest-
ing states, and explored the task-driven effect on the dynamic large-
scale intrinsic functional organization in both on-task state and post-
task resting state. Three hierarchical levels were investigated, including
(a) the whole brain small-world topology, (b) the global DMN topogra-
phy, and (c) the DMN nodal graph properties. The results show that,
first, the large-scale small-world configuration of brain functional orga-
nization is robust in general, regardless of the behavioral state changing,
while it varieswith significantly higher local efficiency and lower global
efficiency during the on-task state. It may reflect an adaptive, dynamic
optimal balance between the functional segregation and integration in
the brain over states. Second, the DMNmay be essentially engaged dur-
ing both task and post-task processeswith adaptively varied spatial pat-
terns and nodal graph properties, which may be related to memory
processing or cognitive resource allocation. Furthermore, the dynamic
intrinsic connectivity associated with recent or ongoing demands may
play important roles in the evolution of brain organization at a large
temporal scale. The present study provides further insights into the ro-
bustness and plasticity of the brain intrinsic organization over states,
which may be the basis of memory and learning in the brain.
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